On the Formation of Biacetyl Trimers in Acidic Media

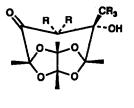
Kai Baldenius^a, P Dallman and John Hudec* Department of Chemistry, The University, Southampton, SO9 5NH

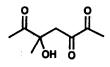
Abstract - Evidence is presented to show that the tricyclic trimer of biacetyl (1) is formed in acidic media via "biacetyl hydrates" rather than the dimeric aldol (2). A new trimer (3) has been isolated as well as a crystalline biacetyl trimer dihydrate.

It has been suggested that the interesting tricyclic trimer (1)^{1,2} that can be recrystallised either from water or petroleum ether b.p. 30-40°C, is formed from biacetyl in concentrated hydrochloric acid via the aldol dimer (2)³ (in its open or cyclised form). Indeed, it was suggested that (1), because of its stability to alkali, could be used as a reagent for the protection of α - or δ -diketones⁴. We wish to show that these statements are incorrect.

An investigation of mother liquors from the preparation of $(1)^1$ yielded small amounts of several crystalline compounds, one of which is an isomeric bicyclic trimer (3), m.p. 88-90°C. The ¹H nmr (CDCl₃ in ppm) showed three singlets of equal intensity at 1.38, 1.64 and 2.23; ¹³C nmr (CDCl₃ in ppm) showed signals at 22.0, 23.9 and 25.0 (CH₃ groups), 108.7 and 111.8 (O-C-O) and 205.2 (C=O). The *cis* stereochemistry of the four quaternary methyl groups follows from its reactions. Thus (3) on heating in dilute aqueous NaOH yields only (1) and the pentadeuterated trimer (1a) is obtained when either (1) or (3) is heated with a trace of NaOD in D₂O, indicating that under the above conditions (1) is thermodynamically more stable than (3)⁵. Furthermore, (3) dissolves readily in 100 vol H₂O₂ at room temperature - this solution deposits after 2-3 days fine long needles of the hydrogen peroxide *d*, *l*-adduct (4).

The fact that we are able to isolate (3) as the only stereoisomer under a variety of conditions of acid concentration, time and temperature and that the presence of water in the reaction is essential, suggests that (1) is formed via hydrated forms of biacetyl⁶, the last step being the acid catalysed aldol condensation of (3) to (1). Thus a) no trace of (1) is obtained even after 2 weeks on treatment of biacetyl in ether or chloroform saturated with HCl gas under anhydrous conditions and b) only (2) is obtained when biacetyl in dry ether is treated with magnesium bromide etherate⁷.


A plausible mechanistic rationalisation that accounts for the formation of (3) and (1) is given in Scheme 1. The preference of biacetyl to hydrate rather than to enolise should not be unexpected as such reaction removes the electrostatic repulsion between the δ + charges on the adjacent carbonyl carbon atoms. Indeed, this interaction must be responsible for the relative stability of the fused dioxolane system in (1) and (3) in aqueous acid. There are many examples of hydration of carbonyl groups in the literature⁸ - the most illustrative one, which shows the directional influence of the δ + on the adjacent α -carbon atoms on the carbonyl group is the comparison of (5) and (6), the former is hemiketalised in CHCl₂/abs.EtOH (9:1) to the extent of 75±5%


^a Hamburg University Exchange Student 1985-6.

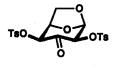
whilst the latter only 5%⁹. This conformationally dependent σ^*/π^* interaction is conceptually identical to the vertical stabilisation¹⁰, albeit in a destabilising sense on account of the adjacent electron poor σ -bonds.

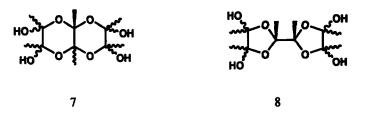
When the reaction between biacetyl and the acid is carried out in 37% DCl in D_2O , (1) and (3) have deuterium incorporated virtually equally on all hydrogen bearing C atoms to the extent of $5.5 \pm 0.5\%^{11}$. As might be expected on the basis of general acid catalysis, the reaction in DCl/ D_2O is about 2 to 3 times faster than in HCl/H₂O.


We have so far isolated only an oily mixture of hydrates on treatment of biacetyl with water only or with aqueous HCl up to 3 molar solution overall. However, 5M aqueous H_2SO_4 yields a crystalline trimer dihydrate which decomposes between 85 and 100°C (without melting) into yellow liquid. The ¹H nmr (1:1 CDCl₃/DMSO-d₆ in ppm) showed signals at 1.33, 1.41 and 1.44 (CH₃ groups) and 5.1 and 5.6 (O-H groups); ¹³C nmr (as for ¹H nmr) 20.1, 21.8 and 23.0 (CH₃ groups) and 104.9, 106.0 and 108.5 (O-C-O). The structure is at present unknown; the data would fit two stereoisomers of (7), each with either *cis* or *trans* ring junction, and the *d*, *l* or either of the two *meso* isomers of (8). The dioxolane structures appear to be more probable by analogy with earlier work on acid catalysed reaction between various alcohols and glyoxal¹². Further work is in progress. [Compounds (3), (4) and (7)/(8) gave satisfactory analytical data]

2

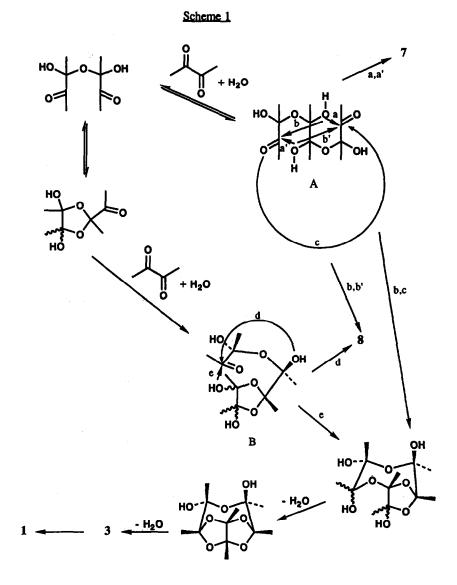
1 R = H1a R = D




HC

5

3



6

References

- 1. Diels, O.; Jost, H. Ber., 1902, 35, 3290.
- 2. Hudec, J.; Turner, D. L. J. Chem. Soc., Perkin Trans. 2, 1982, 951.
- 3. Creswell, R. M.; Smith, W. D. R.; Wood, H. C. S. J. Chem. Soc., 1961, 4882.
- 4. Poje, M.; Perina, I.; Vockovic, I.; Bruno, M. Tetrahedron, 1985, 41, 1985.
- 5. An improved method for the preparation of (3): Freshly distilled biacetyl (2 ml) and c. HCl (3ml) stirred at RT for 1.5 hours. The homogeneous reaction mixture is poured into brine and extracted several times with CHCl₃. The extracts (after water washing, drying and evaporation) yield *ca* 0.8 g of oil which is a mixture of (1) and (3), the latter in greater amounts (50-80%). Crystallisation either from water or petroleum ether b.p. 30-40°C yields pure (3).
- 6. Contrast with the work of Platzer, N.; Lefebvre, B.; Temmen, J.; Mattioda, G. Bull. Soc. chim. Fr., 1981, 40 where hydration for the control of the stereoselectivity cannot be involved.
- 7. Unpublished work.
- Heys, K.; Weyer, J.; Paulsen, H. Chem. Ber., 1967, 100, 2317; Pacák, J.; Stančk, J. jr; Černý, M. Coll. Czech.Chem..Comm., 1974, 39, 1192; Boncza-Tomaszewski, Z. Tetrahedron Lett., 1986, 27, 3767.
- 9. Černý, M.; Pacák, J.; Staněk, J. Carbohyd. Res., 1970, 15, 379.
- Hanstein, W.; Berwin, H. J.; Traylor, T. G. J. Am. Chem. Soc., 1970, 92, 829; Lambert, J. B.; Chelius, E. C. J. Am. Chem. Soc., 1990, 112, 8120.
- 11. Evaluation by ²H nmr in CDCl₃ using an internal deuterated standard.
- 12. Kliegman, J. M.; Barnes, R. K. J. Org. Chem., 1973, 38, 556.

Arrows marked with a, a', b, b', c, d and e show various modes of cyclisation (the addition of hydroxyl group to a protonated carbonyl group) in the hypothetical intermediates A and B.

(Received in UK 19 October 1992)